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INTRODUCTION

Currently, cellular beams are being used 
more often in modern buildings and indus-
trial structures. The static behaviour theory and 
mechanisms of cellular beams failure refer to the 
so-called Vierendeel girder developed as a new 
type of metal bridge girder at the end of the 19th 
century by a Belgian engineer, Professor Arthur 
Vierendeel [1]. The theory of designing perfo-
rated beams welded from hot-rolled I-sections

or C-sections that emerged in the second half 
of the 20th century was based on the concept 
of the Vierendeel bridge girder. A perforated 
beam is fabricated, for example, by cutting an 
I-section along a broken line around the centre line 
of the web, repositioning the resulting T-sections 
and re-welding the two halves in the place of the 
so-called posts. The web openings can be rectan-
gular, round, oval, hexagonal, or another shape 
resulting from the cutting method [2]. A post is 
understood to be a solid web area between the 
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openings. The idea behind this solution is to ob-
tain a section that is about 30–60% deeper that 
the parent section. Thus, its bending stiffness in-
creases about the stronger axis without increasing 
the amount of steel used.

Furthermore, the openings located between 
the T-sections of a cellular beam can be used to 
pass the service within the depth of the section. 
First such load-bearing elements were produced 
in the USA, then in Argentina (the 1930s), Ja-
pan, the UK and Germany at the beginning of 
the 20th century. However, due to the high cost 
of production, they did not gain popularity in 
less prosperous countries. It was only since the 
1980s, with the evolution of cutting and weld-
ing processes, that beams with sequential web 
openings were re-examined on a larger scale, 
gaining more popularity in the 1990s with the 
development of automated cutting. Today, cel-
lular beams find many applications, such as floor 
beams, hall portal frames, purlins, columns, and 
beams in composite floors.

Large, sequentially placed openings in the web 
enable flexible service distribution. Larger cross-
sections of service ducts accommodate building 
services and integrate them with the structural ele-
ments without reducing the room area. In addition, 
increased stiffness of perforated beams enables 
constructing large spans without adding weight, 
such as car parks, roofs and ceilings of commer-
cial and service facilities, sports and recreation or 
industrial facilities (e.g., shipyards), footbridges. 
The openwork structure gives the impression of 
lightness and ensures high aesthetics.

Automation of steel beam production pro-
cesses eliminated manual cutting and welding 
costs, making the prefabrication of a new beam 
generation profitable again. The shapes of the 
openings have been optimised, and their complex 
geometry is an additional architectural value [3]. 
Initial geometric imperfections of ready-made 
perforated steel elements also decreased. One of 
the lead manufacturers claims that for beams with 
circular openings and cross-section depths not 
exceeding 600 mm, the maximum horizontal out-
of-plane deviation of the beam web does not ex-
ceed 4 mm; the tolerance of the perforated section 
depth is +3/-5 mm; the misalignment of tees with 
respect to the vertical axis at the weld is up to 2 
mm; the opening diameter tolerance is +5/-2 mm; 
the longitudinal shift of the upper and lower tees 
is less than 0.03% of the total beam length [4]. 
Account should also be taken of the presence of 

geometric imperfections in the original solid wall 
elements, such as deviations due to the allowable 
tolerances for wall thickness, width and height, as 
well as the radius of curvature. The same applies 
to material imperfections. Residual stresses in the 
original member that occurred as a thermal effect 
of the hot rolling process are adversely increased 
by residual stresses from the perforated beam 
manufacture processes [5]. A beam with circular 
openings is produced by making double cut-outs 
along the entire length of the element. This pro-
cess results in a continuous series of semi-circles 
and straight sections parallel to the horizontal 
axis of the element. Profiling is a fully comput-
erised thermal process of oxygen or plasma torch 
cutting. In the next step, the separated tees are 
repositioned and re-joined into a perforated I-sec-
tion by butt welding with, for example, the MAG 
welder. These stages cause uneven heat exposure 
that facilitates the development of additional in-
ternal stresses. Internal stresses in cellular beams 
are higher than in the beams with hexagonal 
openings due to the greater intensity of thermal 
processes used for making double cut-outs in the 
web. Internal residual stresses combined with 
uniform external stresses lead to premature non-
linear, non-elastic behaviours of the web material 
before the stress from external loads reaches the 
yield strength of the material. This is because the 
residual stresses add up with the principal longi-
tudinal stresses acting in the same direction. The 
effect of the manufacturing process on the in-
crease of residual stresses (the maximum residual 
compressive stresses in particular) in a perforated 
component reduces the buckling strength by about 
one buckling curve [6]. The buckling curve “c” 
from EC3 [7] gives generally satisfactory results 
for the geometry of most of the perforated sec-
tions used. Sonck and Belis [6] numerically and 
experimentally investigated the buckling curve fit 
for elastic lateral-torsional buckling and showed 
that using the buckling curve “c” provides small 
dangerous displacements for the parent section 
HE320A and substantial safe displacements for 
HE320M. By adopting the c buckling curve, it 
is possible to safely take account of the effect of 
geometric imperfections and residual stresses on 
the buckling behaviour of the member. 

In the classical calculation model for a cel-
lular beam (secured against spatial loss of stabil-
ity), the limit state strength of chords and posts is 
determined based on the interaction of longitudi-
nal force, bending moment and transverse force 
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[8, 9]. The calculation scheme is a frame with 
rigid nodes in which flanges are represented by 
horizontal bars, whereas posts are represented by 
vertical bars. Horizontal bars run in the centroid 
of the flanges with a depth of st, at a distance zt 
from the extreme fibres, Figure 1. Vertical bars 
with a length of heff cross the centre of symme-
try of the post to connect with the horizontal bars 
in the nodes. This system is 3n times hyperstatic, 
where “n” represents the number of segments in 
the beam. A single segment is an area between 
the vertical axes of the posts; thus, its length s 
corresponds to the sum of the opening diameter d0 
and the width of the post s0 (Fig. 1). The simpli-
fied calculation scheme introduces hinges in the 
middle of the lengths of the sections between the 
nodes of the horizontal and vertical bars in each 
beam segment. These are the intersection points 
of the bending moment diagram, where the bend-
ing moment is zero. Deflection occurs due to the 
bending moment and shear force. Their influence 
is much more significant than in the case of a 
beam without openings. The shear force causes 
secondary Vierendeel bending moments. The mo-
ment in a segment node is half the transverse de-
sign force in the middle section of the segment in 
question, acting on the lever arm equal to half the 
width of this segment. The interaction of second-
ary moments with global bending moments gen-
erates local axial forces in the flanges and mating 
web parts. Therefore, it is necessary to check the 
safety of the web post cross-sections, the upper 
and lower flange under the action of the longi-
tudinal force, and bending moment and trans-
verse force calculated under the Vierendeel beam 

model. The interaction of compression, bending 
and shear may be neglected if the transverse force 
does not exceed 50% of the plastic shear capacity 
of the cross-section [7]. If this condition is not 
met, the effect of shear can be considered by as-
suming a reduced section design resistance and 
reduced yield stress in the active field shear.

The spacing of the chords increases the bend-
ing stiffness about the stronger axis y-y but does 
not improve the stiffness of the perforated section 
about the weaker axis z-z. Additionally, due to the 
web openings, the torsional stiffness of the perfo-
rated section is reduced (relative to a solid beam). 
Therefore, increased susceptibility is observed of 
the bending component to a spatial loss of stabil-
ity such as lateral-torsional buckling (LTB), web 
distortional buckling (WDB), web-post buckling 
(WPB), Vierendeel mechanism (VM), or the inter-
action of several forms of instability [10, 11, 12, 
13]. Design procedures considering various fail-
ure modes are available in the literature [14, 15]. 

The beam can transfer additional load until 
four plastic hinges develop at the ends of the tees 
near the opening corners, which is understood as 
the Vierendeel mechanism [16, 17]. The develop-
ment of local yielding and the influence of the cut-
out geometry on the VM have been the subject of 
many studies reported in the literature [18, 19]. 

In certain cases of technically important per-
forated web geometry, a different failure mecha-
nism may occur - the web-post buckling between 
openings or, in some cases, the combined action 
of WPB and VM. For example, beams are par-
ticularly exposed to WPB when they are insensi-
tive to lateral stability loss, and shear dominates 

Fig. 1. Basic designations for: a) the parent section, b) the perforated section, c) the static scheme
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in the web. Then the load acting on the top chord 
generates shear stresses in the posts to transfer the 
tensile stresses to the bottom chord. As a result, 
a complex state of stress arises around the open-
ings, leading to the post’s buckling.

In the case of beams not protected against 
lateral loss of stability, web distortional buckling 
(WDB) combined with lateral-torsional buckling 
(LTB) may occur. During WDB, which is a local 
phenomenon, the web is bent over short distanc-
es without complete lateral deflection and twist. 
The phenomenon consists of the web’s horizon-
tal deformation with vertical deflection and the 
displacement of the nodes of the centreline of 
the compression flange. Usually, WDB and LTB 
occur together, resulting in a lateral distortional 
buckling (LDB) mechanism. In the classic LTB 
case, the web moves laterally and twists with the 
flanges as a rigid plate. The study of the interac-
tion of these phenomena [11, 20] found that LTB 
becomes stronger with increasing slenderness of 
the beams, while WDB increases for short beams 
that are less prone to torsion. 

The primary topic of this article is web-post 
buckling (WPB) in the light of available analyti-
cal calculation methods. Methods of load-bear-
ing capacity assessment for WPB are presented 
against American specifications [21] and British 
standards [22] adjusted to the terminology and 
conditions of PN-EN 1993-1-1:2006 [7].

VIERENDEEL BENDING (VM) AND 
WEB-POST BUCKLING (WPB)

The periodic presence of sections with dif-
ferent geometry and load capacity in the cellular 
beam causes many design problems even if the 
beam is secured against lateral-torsional buck-
ling. Two typical failure mechanisms develop in 
this case: 1) a loss of load capacity due to the in-
teraction of the axial force and additional bend-
ing of the chords, i.e., Vierendeel bending, and 2) 
web-post buckling. Tee compression and bending 
comprise the leading mechanism when the post 
is sufficiently wide and stiff (low susceptibility 
of the post to WPB) or when the openings are 
quite wide (elongated), and the web-flange tees 
are quite low (high susceptibility of the chords 
to VM). Due to the geometrical relationships of 
the cutting process in a solid-walled element to 
obtain round holes, the wide posts have a lower  
T-section cross-section. This is because cutting 

along long straight lines (wider posts) requires an 
increased radius of the semi-circles (larger holes) 
that avoid them on the cutting path. For such a 
beam web geometry, when the external loads in-
crease, plastic hinges propagate at the ends of the 
tee segments, i.e., around the corners of the open-
ings. In this case, the beam resistance due to the 
flange yielding condition is generally lower than 
the shear buckling resistance of the post. 

The WPB mechanism occurs first when the 
Vierendeel bending resistance of the chords is 
correspondingly greater than the shear resis-
tance of a relatively narrow post. This is the case 
of closely spaced round holes when the tee sec-
tions above and below the openings are higher. 
The use of appropriately larger openings im-
proves the global bending parameters but reduces 
the shear strength of the beam. It can be stated 
here that an optimally designed cellular beam is 
one in which the bending and shear resistances 
are similar. However, in this case, there may be 
a dangerous WPB and VM interaction mani-
fested by a significant reduction in the load ca-
pacity of the designed beam [23]. In the case of  
a suitably narrow post, the interaction of WPB 
and VM consists of the development of yielding 
zones due to the second-order effects caused by 
the web-post buckling and their progress to the 
Vierendeel bending areas. The wider post is char-
acterised by increased shear strength since the 
diagonal main (compressive) stresses propagate 
over a larger area. The failure mechanism can 
therefore be determined on the basis of geometri-
cal relationships. Based on the experimental and 
numerical studies available in the literature [20, 
28], it can be predicted that the beam will fail in 
the WPB mode if 1.1 ≤ s/d0 ≤ 1.5 and 0.5 ≤ d0/H 
≤ 0.8 and slenderness λ < 200, which covers the 
standard geometries of perforated beams.

Chung et al. [17] developed an algorithm for 
a critical failure mechanism of a perforated ele-
ment under bending and shear moments based 
on the Vierendeel parameter and strength ratios. 
They also proposed formulas and empirical curves 
for the moment-shear interaction for establishing 
load-bearing capacities with different web open-
ings. Generally, beams with rectangular or oval 
openings are more susceptible to Vierendeel bend-
ing than circular openings, where shear buckling 
behaviour in the web post is more important.

According to Hoffman et al. [24], in the sim-
ply supported beam with the uniformly loaded 
upper chord, the region with the highest risk of 
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failure is the web area between the edge of the 
first opening and the beam support node, and the 
area of the first post between the openings, where 
shear dominates. Łysa and Ruchwa [25] claim the 
ring-stiffening is the optimal solution for the web 
in the high shear zones to increase the stiffness to 
local stress concentrations around the openings. 
Local loss of web stability around various types 
of openings is now the leading research direction 
[26], particularly the beams secured against the 
lateral-torsional buckling. In her doctoral thesis, 
De Oliveira [27] established formulas for local 
buckling critical stresses in perforated beams us-
ing Rayleigh’s energy method and validated them 
through MES numerical simulations. Tsavdaridis 
presented comprehensive analyses of stress field 
distribution in cellular beam posts in his doctoral 
thesis [28]. Similar studies were performed by 
Ward [29], Lawson et al. [15, 30], Bitar et al. [31], 
Tsavdaridis et al. [32, 33], Panedpojaman et al. 
[23], Wang et al. [34], and Grilo et al. [35]. As 
a result, analytical methods of WPB resistance 
estimation were developed based on similar ob-
servations but substantially differed in terms of 
developed algorithms. The literature lacks a reli-
able and critical comparison of all these methods 
contained in one document. Only some of the 
methods have been compared for limited design 
situations. The methods of Lawson [15, 30] and 
Panedpojaman [23] were compared by Zaher et al. 
[36], but only for cellular curved beams. Ferreira 
et al. [37] compared the methods of Lawson [15, 
30], Panedpojaman [23] and Grilo [35], but only 
for composite cellular beams with a reinforced 
concrete slab. The methods were too conserva-
tive for composite beams and did not consider the 
beam-concrete slab cooperation or the influence 
of the end post width on the WPB resistance.

Research into the WPB and VM mechanisms 
is continued in order to build a reliable computa-
tional model. In 2021, Kang et al. [38] proposed 
a shear strength prediction model based on the 
DSM (Direct Strength Method). Furthermore, an 
analogy to the compression strut [15, 30, 32, 33, 
23] is used to develop calculation methods for 
beams with hexagonal openings [39]. 

OBJECTIVE OF THE STUDY

The primary objective of this study was to 
present a summary report on web post buckling 
(WPB) in cellular beams in light of available 

analytical computational methods for determin-
ing the WPB resistance based on the analogy to 
buckling of compression members. As shown 
above, there is currently no study in the litera-
ture in which all these methods are presented 
in the way that makes an unambiguous assess-
ment of the differences between the assumptions 
and calculation algorithms possible. There is  
a need to compile and compare what has been 
achieved to date on similar analytical methods 
in a single document. To make this possible, the 
design formulas of the different methods were 
adapted to the nomenclature used in EN 1993-1-1 
[7] to finally determine the design resistance to 
the vertical shear force. The comparison will al-
low checking the degree of agreement between 
different methods and show possible reasons for 
deviations. This study is particularly important for 
designers of metal structures. Knowing the fail-
ure mechanisms and understanding the available 
design methods significantly increases awareness 
among designers. The lack of a clear consensus 
on the correct design procedure for determining 
the load carrying capacity for WPB discourages 
designers from designing optimal load-bearing 
members or may be the cause of structural failure.

ANALYTICAL METHODS FOR THE 
ASSESSMENT OF VERTICAL SHEAR 
FORCE RESISTANCE DUE TO WPB 

Beam webs with closely spaced openings 
are subject to vertical shear, which generates 
horizontal shear in the central part of the post. 
The horizontal shear force causes an internal 
secondary bending moment equal to zero in the 
mid-depth of the post. Its value increases to-
wards the flanges according to the static scheme 
of the Vierendeel beam - the maximum value of 
the moment occurs in the node, Figure 2a. From 
the moment, normal stresses increase to the 
maximum value at the edges of the openings at  
a critical distance from the horizontal axis of the 
beam and then decrease, spreading over a larger 
area, Figure 2b. The horizontal shear force causes 
shear stresses inside the web that decrease towards 
the edge [35], Figure 2c. The maximum reduced 
stresses H-M-H are located at opening edges and 
the intersection point of post diagonals, Figure 2d. 

The limiting vertical shear force in the upper 
tee is limited by the maximum Vierendeel bend-
ing resistance of the T-section (VM) and the shear 
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strength of web post-buckling (WPB). The plas-
tic bending resistance is determined for class 1 of 
the T-section according to EC3 [7]. The web of a 
T-chord is treated as a cantilevered compression 
wall with a class 1 slenderness limit of 9ε; oth-
erwise, the load capacity should be determined 
based on the elastic properties of the cross-sec-
tion. The critical section for the upper tee can be 
determined by replacing a circular opening with 
an effective rectangular opening having a depth 
equal to the circular opening diameter d0 and a 
width equal to half this diameter [32]. The criti-
cal cross-section for determining the Vierendeel 
bending resistance is then above the upper vertex 
of the effective rectangular opening. The limiting 
vertical shear force under VM can therefore be 
obtained by dividing the plastic capacity of the 
T-section cross-section by the lever arm equal to 
half the effective width of the equivalent rectan-
gular opening, formula (1). 
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If the WPB exhausts the beam load-bearing 
capacity, then the maximum vertical shear force 
can be determined using one of the following ana-
lytical methods.

Lawson method - SCI P355

Lawson et al. [15, 30] developed algorithms 
for determining WPB resistance of composite 
and non-composite beams for various perforation 
shapes in the web. The calculation model was 
created based on the observation of stress distri-
bution between the openings. Bending near the 
upper and lower opening parts and the action of 
horizontal shear in the mid-depth of the post gen-
erate compressive and tensile forces that act at the 
opposite diagonals of the post. The trajectories 

of these forces intersect at the mid-depth of the 
post between the openings. The highest normal 
stresses occur at the edge of the opening, in the 
plane, for angle θ from 25° to 40° relative to the 
opening axis [30]. On this basis, Lawson et al. 
[15, 30] proposed a method for predicting web-
post buckling capacity by introducing the so-
called “strut model”. The model involves deter-
mining maximum compression stresses acting 
on an equivalent strut. Its stability is checked 
assuming buckling curve c according to EC3 [7] 
in the same way as in the theory of compression 
members. The value of the maximum principal 
stress in the effective strut can be determined 
from the equilibrium equations with respect to 
point A (Fig. 3), assuming zero shear stresses 
around the opening. However, calibrating the 
stress in the equivalent strut is complicated due to  
a complex stress state varying around the open-
ing. Therefore, for closely spaced circular open-
ings, Lawson et al. [30] proposed that the value 
of horizontal shear stresses in the web post should 
be used for calculation purposes. Stress variabil-
ity dependent on the depth of the openings and 
the post’s width is then taken into account by cali-
brating the effective length of the strut dependent 
on the same parameters. In the case of circular 
openings, an assumption is made of the effective 
restraint point before buckling at the mid-depth 
of the post; therefore, the effective length of the 
compression field is half the diagonal length of 
the post, formula (2). 
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(2)

The SCI P355 publication [15] updates the 
previous approach presented by Ward in the SCI 
P100 publication [29]. The Lawson method is 
also intended for openings located asymmetrical-
ly at a depth of the web. Then, when determining 
the stresses acting on the web post, an additional 

Fig. 2. Forces and stresses in the web post: a) force distribution, b) normal stresses, c) shear stresses, 
d) von Mises reduced stresses according to [35] (the red colour represents the highest positive values)
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bending moment in the plane of the post, resulting 
from the asymmetry of the cross-section, should 
be taken into account. In this article, formulas 
are presented only for the symmetrical web per-
foration situations, which means that the vertical 
shear force in the upper and lower tee is identical, 
and no additional bending moment occurs. Nor-
mal stresses in the equivalent strut are described 
by formula (3).
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(3)

In order to compare this method with other 
methods discussed in this article, the Lawson for-
mula [15] was transformed using the relationship 
between the horizontal and vertical forces. Force 
Vv is the design value of the total vertical force 
acting on the section of the cellular beam along 
the vertical axis of the web post. The resistance 
for the maximum vertical shear force is described 
by formula (4).
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buckling curve c.
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𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣 ∙

𝑠𝑠𝑠𝑠
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 � 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻 − 2𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡 = 

= 𝐻𝐻𝐻𝐻 − 2 ∙
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2

2�𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒�
 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜆𝜆𝜆𝜆1

=
𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑖𝑖
∙

1
𝜆𝜆𝜆𝜆1

= 

=
0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0

2

𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
√12

∙
1

93.9�235
𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 =
𝑠𝑠𝑠𝑠0
2

 

 

𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 

𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2 

(6)

The method proposed by Lawson et al. [15, 
30], also called the SCI P355 method, is cali-
brated for cellular beams for which the condition 
d0 ≥ s0 ≥ 0.3d0 is met, while the assumptions and 
formulas presented above refer to the situation of 
closely spaced openings, where 0.5d0 > s0. 

Effective stress modification by Tsavdaridis

Tsavdaridis and D’Mello [32] presented an 
experimental and numerical study of the failure 
mode of beams with circular openings and those 
with a particular shape. They performed 220 
complete parametric analyses of elastic-plastic el-
ements to propose an empirical method for evalu-
ating the compressive strength of the web post. 
Investigations included the effect of the opening 
diameter-web thickness ratio on the web post sta-
bility and the opening spacing-opening diameter 
ratio on sustaining the effective compression strut 
for different opening geometries.

The publications of Tsavdaridis and D’Mello 
[32] and Tsavdaridis and Galiatsatos [33] allow 
establishing basic assumptions for the calcula-
tion model of closely spaced circular openings. 
The method is very similar to SCI P355 [15]. 
However, it differs in adopting the effective strut 
boundary conditions and determining the stresses 
acting on the strut. Additionally, an assumption 
was made of the effective width of the compres-
sion strut, according to formula (7). The model 
also assumes that the equivalent compression di-
agonal strut acts diagonally in the post in its di-
agonal direction. The authors concluded that the 
compressive stresses in the diagonal are gener-
ated by half of the total vertical shear force, i.e., 
shear force in the upper tee (formula 8). The strut 
acts as a bar under compression along the total 
diagonal length of the post, but the ends of which 
are modelled as fixed-fixed, therefore due to the 
assumed boundary conditions, the reduction fac-
tor of the effective length is 0.5 (Fig. 4). As a re-
sult, the effective length for the unstiffened post 
is as in formula (2) in Lawson’s method. When a 
vertical stiffener is used in the post, the reduction 
factor takes other values, mentioned in the publi-
cation by Tsavdaridis and Galiatsatos [33]. Factor 

Fig. 3. Strut model by Lawson [30]
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χ is to be determined on the basis of the relative 
slenderness, formula (6), calculated using the ef-
fective length of the strut and the buckling curve 
c, according to PN-EN 1993-1-1 §6.3.1.2. (6.49) 
[7]. The total vertical shear resistance in the verti-
cal axis of the post is described by formula (9).

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

=
𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0.5 �𝑑𝑑𝑑𝑑02 �
 

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 ≤ 0.7𝑑𝑑𝑑𝑑0 

 

𝜎𝜎𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜏𝜏𝜏𝜏ℎ =
𝑉𝑉𝑉𝑉ℎ
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣 ∙

𝑠𝑠𝑠𝑠
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
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𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 � 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻 − 2𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡 = 
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𝑖𝑖𝑖𝑖
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1
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=
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93.9�235
𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 =
𝑠𝑠𝑠𝑠0
2

 

 

𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 

𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2 

(7)

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

=
𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0.5 �𝑑𝑑𝑑𝑑02 �
 

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 ≤ 0.7𝑑𝑑𝑑𝑑0 

 

𝜎𝜎𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜏𝜏𝜏𝜏ℎ =
𝑉𝑉𝑉𝑉ℎ
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣 ∙

𝑠𝑠𝑠𝑠
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 � 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻 − 2𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡 = 

= 𝐻𝐻𝐻𝐻 − 2 ∙
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2

2�𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒�
 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜆𝜆𝜆𝜆1

=
𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑖𝑖
∙

1
𝜆𝜆𝜆𝜆1

= 

=
0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
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𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 =
𝑠𝑠𝑠𝑠0
2

 

 

𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 

𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2 

(8)

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

=
𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0.5 �𝑑𝑑𝑑𝑑02 �
 

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 ≤ 0.7𝑑𝑑𝑑𝑑0 

 

𝜎𝜎𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜏𝜏𝜏𝜏ℎ =
𝑉𝑉𝑉𝑉ℎ
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣 ∙

𝑠𝑠𝑠𝑠
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 � 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻 − 2𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡 = 

= 𝐻𝐻𝐻𝐻 − 2 ∙
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2

2�𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒�
 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜆𝜆𝜆𝜆1

=
𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑖𝑖
∙
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𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 =
𝑠𝑠𝑠𝑠0
2

 

 

𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 

𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2 

(9)

Modification of effective length 
by Panedpojaman

Unlike in the approach presented by Lawson 
[15] and Tsavdaridis [32, 33], Panedpojaman et 
al. [23] defined the length of the strut as equal to 
half of the segment of the tangent to the adjacent 
openings, running across the post. The tangent 
line was used because the stress concentration 
points occur at the opening edges close to the 
point of tangency. Adopting half of the tangent 
length agrees with the assumed location of the 
stabilisation point in the mid-length of the tan-
gent, as in the Lawson model [15, 30], formula 
(11). The value of an effective length needs to 
be determined using a correction factor, formu-
las (12) and (13). This approach allows including 
both the elastic restraint due to stress variation in 
the web post and the size of the area above the 
opening, which also limits buckling. The value 
of the correction factor k depends on the coeffi-
cient d0/d and spacing ratio s/d0, where d is the 
initial height of the base section (before the cut). 
The modification introduces better matching the 

strut effective length to different web post widths. 
The strut from formula (11) is shorter for ratio 
s/d0<1.5 and longer for s/d0>1.5, relative to the 
Lawson effective length from formula (10). A 
shorter strut increases the buckling strength and, 
as a result, partially reduces the conservative re-
sults obtained from the Lawson model [15, 30] 
for slender web posts.

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

=
𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0.5 �𝑑𝑑𝑑𝑑02 �
 

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 ≤ 0.7𝑑𝑑𝑑𝑑0 

 

𝜎𝜎𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜏𝜏𝜏𝜏ℎ =
𝑉𝑉𝑉𝑉ℎ
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣 ∙

𝑠𝑠𝑠𝑠
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 � 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻 − 2𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡 = 

= 𝐻𝐻𝐻𝐻 − 2 ∙
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2

2�𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒�
 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜆𝜆𝜆𝜆1

=
𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑖𝑖
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𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 =
𝑠𝑠𝑠𝑠0
2

 

 

𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 

𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2 

(10)

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

=
𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0.5 �𝑑𝑑𝑑𝑑02 �
 

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 ≤ 0.7𝑑𝑑𝑑𝑑0 

 

𝜎𝜎𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜏𝜏𝜏𝜏ℎ =
𝑉𝑉𝑉𝑉ℎ
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣 ∙

𝑠𝑠𝑠𝑠
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 � 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻𝐻𝐻 − 2𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡 = 

= 𝐻𝐻𝐻𝐻 − 2 ∙
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒2

2�𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒�
 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜆𝜆𝜆𝜆1

=
𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑖𝑖
∙

1
𝜆𝜆𝜆𝜆1

= 

=
0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0

2

𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
√12

∙
1

93.9�235
𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 =
𝑠𝑠𝑠𝑠0
2

 

 

𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 ∙ 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = 𝜒𝜒𝜒𝜒
𝑠𝑠𝑠𝑠0𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1

 

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠02 + 𝑑𝑑𝑑𝑑0
2 

𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2 (11)

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

𝑘𝑘𝑘𝑘 = 0.90
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑
�
2

≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �1.15
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

 , 1.15 � 

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 = 𝜅𝜅𝜅𝜅 ∙
𝑠𝑠𝑠𝑠0
2

 

 

𝜅𝜅𝜅𝜅 = 𝑎𝑎𝑎𝑎0 + 𝑎𝑎𝑎𝑎1 ∙
𝑑𝑑𝑑𝑑0
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑎𝑎𝑎𝑎0 = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

 

 

𝑎𝑎𝑎𝑎1 = 𝑐𝑐𝑐𝑐0 + 𝑐𝑐𝑐𝑐1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

+ 𝑐𝑐𝑐𝑐2 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

 

 

𝜎𝜎𝜎𝜎𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃,𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 = 𝜒𝜒𝜒𝜒
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑃𝑃𝑃𝑃1
 

 

𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =
𝑑𝑑𝑑𝑑0
2
�0.445 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
3
− 2.578 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

+ 4.770 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
� − 2.475� 

 

𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑑𝑑0�1 −
4𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

𝑑𝑑𝑑𝑑0
2  

 

𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉ℎ,𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 ∙ 𝜒𝜒𝜒𝜒 = 𝜇𝜇𝜇𝜇 ∙ 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝

2

�3𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
2 + 16𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

∙ 𝜒𝜒𝜒𝜒 

 

𝜇𝜇𝜇𝜇 = 1.198− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻

+
𝑠𝑠𝑠𝑠

5𝑑𝑑𝑑𝑑0
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

< 1.2 

(12)

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

𝑘𝑘𝑘𝑘 = 0.90
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑
�
2

≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �1.15
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

 , 1.15 � 

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 = 𝜅𝜅𝜅𝜅 ∙
𝑠𝑠𝑠𝑠0
2

 

 

𝜅𝜅𝜅𝜅 = 𝑎𝑎𝑎𝑎0 + 𝑎𝑎𝑎𝑎1 ∙
𝑑𝑑𝑑𝑑0
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑎𝑎𝑎𝑎0 = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1 ∙
𝑠𝑠𝑠𝑠
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Compression stress and strength should be de-
termined analogous to the Tsavdaridis method [32], 
formulas (8) and (9), using the modified effective 
length of the strut from formula (12) to calculating 

Fig. 4. Forces in web-post and design model according to Tsavdaridis and D’Mello [32]

Fig. 5. Design model by Panedpojaman et al. [23]
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relative slenderness according to formula (6). Factor 
χ is to be determined according to PN-EN 1993-1-1 
§6.3.1.2. (6.49) [7] for buckling curve c. 

Modification of effective length by Wang

Wang et al. [34] investigated the accuracy 
of determining the compressive stresses in 
the post according to the methods of Lawson 
[30], Tsavdaridis [32] and Bitar [31] with the 
FEM approach. They aimed to make one of 
the methods applicable for assessing the web 
post stability in fire conditions. Choosing the 
Tsavdaridis method [32] for further modifica-
tions, they showed that his assumption of an 
effective width equal to half the post’s width 
at its narrowest point is valid for greater web 
thicknesses or distances between the edges 
of adjacent openings. However, it does not 
work for narrow posts, underestimating the 
buckling resistance at ambient temperature 
and during the fire. For thin webs and narrow 
posts, the effective width be is nearly equal to 
the post width s0. Wang et al. [34] proposed  
a modification of the effective width of the strut 
based on the measurements of the bandwidth 
of compressive stresses in the FEM model. The 
width depends on the parameters s0, d0 and tw. It 
can be determined from the following formulas:
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𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

 , 1.15 � 

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 = 𝜅𝜅𝜅𝜅 ∙
𝑠𝑠𝑠𝑠0
2

 

 

𝜅𝜅𝜅𝜅 = 𝑎𝑎𝑎𝑎0 + 𝑎𝑎𝑎𝑎1 ∙
𝑑𝑑𝑑𝑑0
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑎𝑎𝑎𝑎0 = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

 

 

𝑎𝑎𝑎𝑎1 = 𝑐𝑐𝑐𝑐0 + 𝑐𝑐𝑐𝑐1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

+ 𝑐𝑐𝑐𝑐2 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

 

 

𝜎𝜎𝜎𝜎𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃,𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 = 𝜒𝜒𝜒𝜒
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑃𝑃𝑃𝑃1
 

 

𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =
𝑑𝑑𝑑𝑑0
2
�0.445 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
3
− 2.578 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

+ 4.770 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
� − 2.475� 

 

𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑑𝑑0�1 −
4𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

𝑑𝑑𝑑𝑑0
2  

 

𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉ℎ,𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 ∙ 𝜒𝜒𝜒𝜒 = 𝜇𝜇𝜇𝜇 ∙ 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝

2

�3𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
2 + 16𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

∙ 𝜒𝜒𝜒𝜒 

 

𝜇𝜇𝜇𝜇 = 1.198− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻

+
𝑠𝑠𝑠𝑠

5𝑑𝑑𝑑𝑑0
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

< 1.2 

(16)

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

𝑘𝑘𝑘𝑘 = 0.90
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑
�
2

≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �1.15
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

 , 1.15 � 

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 = 𝜅𝜅𝜅𝜅 ∙
𝑠𝑠𝑠𝑠0
2

 

 

𝜅𝜅𝜅𝜅 = 𝑎𝑎𝑎𝑎0 + 𝑎𝑎𝑎𝑎1 ∙
𝑑𝑑𝑑𝑑0
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑎𝑎𝑎𝑎0 = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

 

 

𝑎𝑎𝑎𝑎1 = 𝑐𝑐𝑐𝑐0 + 𝑐𝑐𝑐𝑐1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

+ 𝑐𝑐𝑐𝑐2 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

 

 

𝜎𝜎𝜎𝜎𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃,𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 = 𝜒𝜒𝜒𝜒
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑃𝑃𝑃𝑃1
 

 

𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =
𝑑𝑑𝑑𝑑0
2
�0.445 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
3
− 2.578 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

+ 4.770 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
� − 2.475� 

 

𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑑𝑑0�1 −
4𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

𝑑𝑑𝑑𝑑0
2  

 

𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉ℎ,𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 ∙ 𝜒𝜒𝜒𝜒 = 𝜇𝜇𝜇𝜇 ∙ 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝

2

�3𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
2 + 16𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

∙ 𝜒𝜒𝜒𝜒 

 

𝜇𝜇𝜇𝜇 = 1.198− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻

+
𝑠𝑠𝑠𝑠

5𝑑𝑑𝑑𝑑0
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

< 1.2 

(17)

The fit coefficients for equations (15), (16) 
and (17) were determined on the basis of the 
FEM analysis results curve fit and are present-
ed in Table 1. Compression stress and load ca-
pacity should be determined analogous to the 
Tsavdaridis method [32], using the modified 
effective width of the strut bem, formula (19). 
Factor χ is to be determined according to PN-
EN 1993-1-1 §6.3.1.2. (6.49) [7] for buckling 
curve c. The relative slenderness is determined 
according to formula (6) using the effective 
length according to formula (2).

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

𝑘𝑘𝑘𝑘 = 0.90
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑
�
2

≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �1.15
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

 , 1.15 � 

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 = 𝜅𝜅𝜅𝜅 ∙
𝑠𝑠𝑠𝑠0
2

 

 

𝜅𝜅𝜅𝜅 = 𝑎𝑎𝑎𝑎0 + 𝑎𝑎𝑎𝑎1 ∙
𝑑𝑑𝑑𝑑0
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑎𝑎𝑎𝑎0 = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

 

 

𝑎𝑎𝑎𝑎1 = 𝑐𝑐𝑐𝑐0 + 𝑐𝑐𝑐𝑐1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

+ 𝑐𝑐𝑐𝑐2 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

 

 

𝜎𝜎𝜎𝜎𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃,𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 = 𝜒𝜒𝜒𝜒
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑃𝑃𝑃𝑃1
 

 

𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =
𝑑𝑑𝑑𝑑0
2
�0.445 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
3
− 2.578 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

+ 4.770 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
� − 2.475� 

 

𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑑𝑑0�1 −
4𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

𝑑𝑑𝑑𝑑0
2  

 

𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉ℎ,𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 ∙ 𝜒𝜒𝜒𝜒 = 𝜇𝜇𝜇𝜇 ∙ 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝

2

�3𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
2 + 16𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

∙ 𝜒𝜒𝜒𝜒 

 

𝜇𝜇𝜇𝜇 = 1.198− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻

+
𝑠𝑠𝑠𝑠

5𝑑𝑑𝑑𝑑0
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

< 1.2 

(18)

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

𝑘𝑘𝑘𝑘 = 0.90
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑
�
2

≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �1.15
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Bitar Method

CTICM developed the method (Bitar et al. 
[31]) on behalf of ArcelorMittal as part of the pre-
paratory work for the ACB software development. 
The method is based on finding the horizontal 
critical cross-section of a post in which there is 
a stress concentration from the horizontal shear 
force acting in the plane of the web. First, the dis-
tance of this cross-section from the post’s horizon-
tal axis is determined, then the width of the criti-
cal cross-section, and finally, its strength is cal-
culated. However, the method has not been fully 
explained as some details are confidential. Wang 
et al. [34] compared various methods of determin-
ing the compressive stresses in the post with the 
FEM analysis, using a modified version of Bitar’s 
analytical model for fire conditions. They found 
that the stresses obtained with this model are ex-
tremely high. Therefore, the method of Bitar et al. 
[31] will not be analysed further in this article.

Grilo Method

The studies of Grilo et al. [35] confirm the 
stabilizing role of tensile stresses and the phe-
nomenon of S-shaped buckling. During the loss of 
stability of a post by buckling, due to the impact 
of compressive stresses caused by shear force, 
the post twists around its vertical axis. Grilo et 
al. [35] proposed a new calculation procedure, 
verified on the basis of 2545 numerical models 
and calibrated by laboratory tests of 14 full-size 
cellular beams. The procedure is similar to the as-
sumptions of Bitar et al. [31]. However, in this 
case, the algorithm is more extensive and allows 
taking the complex state of stresses around the 
openings into account. The laboratory tests were 
performed on simply supported beams with four 
circular openings, loaded in the mid-span with a 
concentrated force acting on the central post with 

Table 1. Fit coefficients [34]
b0 = 0.623962 b1 = 0.487153 -

c0 = 0.072041 c1 = −0.07283 c2 = 0.016533
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stiffeners. Since the support post is also stiffened, 
WPB occurs only in two unstiffened posts. For 
particularly slender posts, the so-called border ef-
fect can occur that consists of WPB followed by  
a further load increase due to the post-critical 
Vierendeel mechanism acting on the frame sur-
rounding the two openings made of T-sections 
and stiffened posts (Fig. 6.). Grilo et al. [35] 
eliminated the border effect by conducting nu-
merical analyses on long beam models with more 
openings and posts. Based on these observations, 
they calibrated a new single web post model that 
is insensitive to the border effect. The WPB phe-
nomenon for closely spaced openings is mainly 
due to the action of horizontal shear, as also stated 
by Lawson [15, 30], so the single web post model 
was considered adequate for calibrating the em-
pirical analytical procedure. 

The horizontal shear force Vh causes bending 
with increasing distance from the horizontal axis 
of the web post. An internal bending moment de-
velops and increases towards the T-section. How-
ever, as the cross-section of the web post widens 
in the direction of the increasing bending moment, 
the bending stresses increase up to a maximum 
value at a certain critical distance and then de-
crease, spreading over a larger area. After deter-
mining the arm for the critical cross-section, the 
critical cross-section area should be established, 
where yielding occurs due to interacting normal 
and shear stresses, formulas (20) and (21). This 
phenomenon is non-linear and the yield line is 
not necessarily straight; therefore, the analytical 
model is calibrated using additional coefficients 
while accepting some approximations. To include 
the complex stress state, Grilo et al. [35] intro-
duced the equivalent yield strength to determine 
the maximum normal stresses and the equivalent 
shear strength to determine the maximum shear 
stresses. The value of the equivalent yield point 

matches the maximum stress induced by bending 
with horizontal shear force Vh on the arm y with 
the cross section defined by the plastic modulus. 
The equivalent shear strength corresponds to the 
maximum shear force that can be contained by 
the transverse cross section of the web post. The 
interaction of normal and shear stresses is de-
termined by a mutual relationship between the 
equivalent yield strength and equivalent shear 
strength with respect to the first yield strength fy 
of the material based on the von Mises reduced 
stresses criterion (H-M-H hypothesis). By isolat-
ing the value of the horizontal shear force Vh from 
this relationship, the horizontal plastic shear re-
sistance can be determined. The horizontal shear 
value Vh from this relationship allows determining 
the horizontal plastic shear capacity. This value is 
calibrated using both the approximated empiri-
cal formula for ypl and empirical efficiency factor 
μ (1.00 do 1.23) according to formulas (23) and 
(25). Plastic resistance for the vertical shear force 
Vv can be obtained using the interdependence 
between the horizontal and vertical forces deter-
mined from the equilibrium equations, using the 
heff distance determined from (5). The value of the 
design vertical shear resistance due to buckling of 
the web post, formula (28), is determined using 
the buckling coefficient χ, which reduces the plas-
tic shear resistance of the cross-section, and the 
partial material factor to determine the resistance 
with consideration of element stability [7]. Factor 
χ is calculated using empirical formulas (26) and 
(27) for two situations dependent on the size of 
the dimensionless relative slenderness from (25). 
The factor values for formulas (26) and (27) are 
presented in Table 2.
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𝛾𝛾𝛾𝛾𝑃𝑃𝑃𝑃1
 

 

𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =
𝑑𝑑𝑑𝑑0
2
�0.445 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
3
− 2.578 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

+ 4.770 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
� − 2.475� 

 

𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑑𝑑0�1 −
4𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

𝑑𝑑𝑑𝑑0
2  

 

𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉ℎ,𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 ∙ 𝜒𝜒𝜒𝜒 = 𝜇𝜇𝜇𝜇 ∙ 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝

2

�3𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
2 + 16𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

∙ 𝜒𝜒𝜒𝜒 

 

𝜇𝜇𝜇𝜇 = 1.198− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻

+
𝑠𝑠𝑠𝑠

5𝑑𝑑𝑑𝑑0
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

< 1.2 

(22)

𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

𝑘𝑘𝑘𝑘 = 0.90
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑
�
2

≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �1.15
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

 , 1.15 � 

 

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 = 𝜅𝜅𝜅𝜅 ∙
𝑠𝑠𝑠𝑠0
2

 

 

𝜅𝜅𝜅𝜅 = 𝑎𝑎𝑎𝑎0 + 𝑎𝑎𝑎𝑎1 ∙
𝑑𝑑𝑑𝑑0
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑎𝑎𝑎𝑎0 = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

 

 

𝑎𝑎𝑎𝑎1 = 𝑐𝑐𝑐𝑐0 + 𝑐𝑐𝑐𝑐1 ∙
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

+ 𝑐𝑐𝑐𝑐2 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

 

 

𝜎𝜎𝜎𝜎𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 =
𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2

𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤
=

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃 ∙ 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃,𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 = 𝜒𝜒𝜒𝜒
2 ∙ 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝛾𝛾𝛾𝛾𝑃𝑃𝑃𝑃1
 

 

𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =
𝑑𝑑𝑑𝑑0
2
�0.445 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
3
− 2.578 �

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
�
2

+ 4.770 �
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0
� − 2.475� 

 

𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑑𝑑0�1 −
4𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

𝑑𝑑𝑑𝑑0
2  

 

𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉ℎ,𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 ∙ 𝜒𝜒𝜒𝜒 = 𝜇𝜇𝜇𝜇 ∙ 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝

2

�3𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
2 + 16𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2

∙ 𝜒𝜒𝜒𝜒 

 

𝜇𝜇𝜇𝜇 = 1.198− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻

+
𝑠𝑠𝑠𝑠

5𝑑𝑑𝑑𝑑0
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

< 1.2 (23)Fig. 6. Web post instability due to buckling and post-crit-
ical Vierendeel bending mechanism by Grilo et al. [35]
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𝜇𝜇𝜇𝜇 = 1.838− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻
−

𝑠𝑠𝑠𝑠
3𝑑𝑑𝑑𝑑0

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

≥ 1.2 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜋𝜋𝜋𝜋
�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝐸𝐸𝐸𝐸

= �3�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝜋𝜋𝜋𝜋2𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤2𝐸𝐸𝐸𝐸
 

 

𝜒𝜒𝜒𝜒 =
𝛼𝛼𝛼𝛼
�̅�𝜆𝜆𝜆𝛽𝛽𝛽𝛽

 ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 ≥ 1.0 

 

𝜒𝜒𝜒𝜒 = 𝛾𝛾𝛾𝛾 ∙ 𝜀𝜀𝜀𝜀�𝜆𝜆𝜆𝜆�𝜂𝜂𝜂𝜂�  ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 < 1.0 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 �

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

(24)

𝜇𝜇𝜇𝜇 = 1.838− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻
−

𝑠𝑠𝑠𝑠
3𝑑𝑑𝑑𝑑0

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

≥ 1.2 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜋𝜋𝜋𝜋
�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝐸𝐸𝐸𝐸

= �3�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝜋𝜋𝜋𝜋2𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤2𝐸𝐸𝐸𝐸
 

 

𝜒𝜒𝜒𝜒 =
𝛼𝛼𝛼𝛼
�̅�𝜆𝜆𝜆𝛽𝛽𝛽𝛽

 ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 ≥ 1.0 

 

𝜒𝜒𝜒𝜒 = 𝛾𝛾𝛾𝛾 ∙ 𝜀𝜀𝜀𝜀�𝜆𝜆𝜆𝜆�𝜂𝜂𝜂𝜂�  ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 < 1.0 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 �

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

(25)

𝜇𝜇𝜇𝜇 = 1.838− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻
−

𝑠𝑠𝑠𝑠
3𝑑𝑑𝑑𝑑0

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

≥ 1.2 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜋𝜋𝜋𝜋
�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝐸𝐸𝐸𝐸

= �3�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝜋𝜋𝜋𝜋2𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤2𝐸𝐸𝐸𝐸
 

 

𝜒𝜒𝜒𝜒 =
𝛼𝛼𝛼𝛼
�̅�𝜆𝜆𝜆𝛽𝛽𝛽𝛽

 ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 ≥ 1.0 

 

𝜒𝜒𝜒𝜒 = 𝛾𝛾𝛾𝛾 ∙ 𝜀𝜀𝜀𝜀�𝜆𝜆𝜆𝜆�𝜂𝜂𝜂𝜂�  ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 < 1.0 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 �

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

(26)

𝜇𝜇𝜇𝜇 = 1.838− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻
−

𝑠𝑠𝑠𝑠
3𝑑𝑑𝑑𝑑0

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

≥ 1.2 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜋𝜋𝜋𝜋
�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝐸𝐸𝐸𝐸

= �3�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝜋𝜋𝜋𝜋2𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤2𝐸𝐸𝐸𝐸
 

 

𝜒𝜒𝜒𝜒 =
𝛼𝛼𝛼𝛼
�̅�𝜆𝜆𝜆𝛽𝛽𝛽𝛽

 ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 ≥ 1.0 

 

𝜒𝜒𝜒𝜒 = 𝛾𝛾𝛾𝛾 ∙ 𝜀𝜀𝜀𝜀�𝜆𝜆𝜆𝜆�𝜂𝜂𝜂𝜂�  ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 < 1.0 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 �

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 

(27)

𝜇𝜇𝜇𝜇 = 1.838− 0.42
𝑑𝑑𝑑𝑑0
𝐻𝐻𝐻𝐻
−

𝑠𝑠𝑠𝑠
3𝑑𝑑𝑑𝑑0

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑0

≥ 1.2 

 

�̅�𝜆𝜆𝜆 =
𝜆𝜆𝜆𝜆
𝜋𝜋𝜋𝜋
�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝐸𝐸𝐸𝐸

= �3�𝑠𝑠𝑠𝑠2 − 𝑑𝑑𝑑𝑑0
2�𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦

𝜋𝜋𝜋𝜋2𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤2𝐸𝐸𝐸𝐸
 

 

𝜒𝜒𝜒𝜒 =
𝛼𝛼𝛼𝛼
�̅�𝜆𝜆𝜆𝛽𝛽𝛽𝛽

 ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 ≥ 1.0 

 

𝜒𝜒𝜒𝜒 = 𝛾𝛾𝛾𝛾 ∙ 𝜀𝜀𝜀𝜀�𝜆𝜆𝜆𝜆�𝜂𝜂𝜂𝜂�  ≤ 1.0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �̅�𝜆𝜆𝜆 < 1.0 

 

𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝑉𝑉ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠 �

𝛾𝛾𝛾𝛾𝑀𝑀𝑀𝑀1
 (28)

COMPARISON OF METHODS

Initial assumptions

The methods and their modifications were 
compared using seven beam geometries for which 
WPB failure was demonstrated experimentally and 
numerically in the literature [23, 35]. Beam B1-B3 

were made of the American W310x21.0 (W12x14) 
profiles, beam B4 was made of the W310x28.3 
(W12x19) profile, according to [35]. Beams B5 
and B6 were fabricated from the European IPE400 
profiles, and beam B7 was manufactured from the 
HEB400 profile, according to [23]. Average geo-
metric dimensions measured after fabrication were 
adopted for the analysis except for the initial sec-
tion depth d (before cutting). For the initial section 
depth d, used to determine the correction factor k in 
the modification of Panedpojaman et al. [23], stan-
dard denominations were used. For all analysed 
beams, the nominal yield strength fy for steel S235 
was adopted; therefore, the material properties did 
not affect the assessment of the methods described. 
Data for analytical calculations are included in 
Table 3. In the method of Grilo et al. [35], the coef-
ficients α, β, γ, ε, 𝜂 for the intermediate d0/H and 
s/d0 ratios in the analysed beams were determined 
based on the linear interpolation. 

Parameter Vv,Rd to be determined is the 
buckling load capacity of the web post, which 
should be compared with the total vertical shear 
force Vv,Ed acting on the beam cross-section in 
the vertical axis of the web post.

Table 2. Values of coefficients for determining buckling coefficient χ [35]

d0/H s/d0

Coefficient
d0/H s/d0

Coefficient

α β γ ε η α β γ ε η

0.5

1.1 0.759 1.35 1.15 0.660 3.5

0.7

1.1 0.849 1.47 1.08 0.786 4.5

1.2 0.730 1.39 1.42 0.514 2.1 1.2 0.844 1.44 1.11 0.760 3.9

1.3 0.780 1.40 1.16 0.672 3.5 1.3 0.903 1.39 1.15 0.785 4.0

1.4 0.840 1.42 1.26 0.667 2.7 1.4 0.980 1.34 1.12 0.870 3.0

1.5 0.916 1.40 1.09 0.840 5.0 1.5 1.130 1.33 - - -

0.6

1.1 0.798 1.42 1.14 0.700 3.5

0.8

1.1 0.888 1.46 1.09 0.815 4.0

1.2 0.791 1.42 1.13 0.700 3.8 1.2 0.901 1.42 1.14 0.790 3.5

1.3 0.836 1.40 1.10 0.760 4.5 1.3 1.020 1.42 - - -

1.4 0.909 1.36 1.15 0.790 3.3 1.4 1.175 1.42 - - -

1.5 0.970 1.31 1.09 0.890 4.5 1.5 1.285 1.36 - - -

Table 3. Geometric quantities for analytical calculations

Name bf         
[mm]

tf         
[mm]

tw         
[mm]

d0         
[mm]

H         
[mm]

s         
[mm]

s0         
[mm]

fy
[MPa]

d       
[mm] d0 / tw d0 / H s / d0

d0 
/ d

st
[mm]

zt
[mm]

B1 102 5.6 4.8 342.5 433.0 445.8 103.3 235 302 71.35 0.79 1.30 1.13 45.3 8.466068

B2 104 6.2 4.7 343.9 433.0 483.2 139.3 235 302 73.17 0.79 1.41 1.14 44.6 7.976774

B3 103 5.8 4.9 250.0 407.0 350.1 100.1 235 302 51.02 0.61 1.40 0.83 78.5 17.561900

B4 98 9.2 6.0 245.0 409.0 343.0 98.0 235 309 40.83 0.60 1.40 0.79 82.0 17.980753

B5 180 13.5 8.6 358.0 558.0 480.0 122.0 235 400 41.63 0.64 1.34 0.90 100.0 18.469021

B6 180 13.5 8.6 430.0 600.0 485.0 55.0 235 400 50.00 0.72 1.13 1.08 85.0 15.332630

B7 300 24.0 13.5 422.0 599.0 485.0 63.0 235 400 31.26 0.70 1.15 1.06 88.5 16.774115
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RESULTS

The calculations were performed using 
the MS Excel spreadsheet. The empirical cor-
rection factors and buckling parameters were 
rounded to the sixth decimal place. Results for 
the methods based on the compression strut 

model are presented in Tables 5-11 and the 
final formulas used for the analytical calcula-
tions are shown in Table 4. Analytically calcu-
lated load capacity for each of the beams are 
presented in Figure 7, distinguishing between 
the individual methods described in this article 
[15, 30, 32, 33, 23, 34, 35]. 

Table 4. Final formulas for analytical calculations

Method Effective length
[mm]

Relative 
slenderness

[-]

Buckling 
coefficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
Eq. (2) Eq. (6) PN-EN 1993-1-1

§ 6.3.1.2.
Eq. (6.49) for 

α=0.49

N/A Eq. (3) Eq. (4)

Tsavdaridis
Eq. (7) Eq. (8)

Eq. (9)

Panedpojaman Eq. (12) Eq. (6) Eq. (9)

Wang Eq. (2) Eq. (6) Eq. (14) Eq. (18) Eq. (19)

Grilo - Eq. (28)

Table 5. Results for B1

Method Effective length
[mm]

Relative 
slenderness

[-]

Buckling 
coefficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
178.8695 1.3704 0.3604

N/A 2.161 39.194

Tsavdaridis
51.65 2.017

41.995

Panedpojaman 164.0831 
(-8.3%)

1.2571
(-8.3%)

0.4074
(+13.0%) 47.471

Wang 178.8695 1.3704 0.3604 84.3449 
(+63.3%) 1.235 68.578

Grilo - 48.822

Table 6. Results for B2

Method Effective length
[mm]

Relative 
slenderness

[-]

Buckling 
coefficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
185.5207 1.4527 0.3304

N/A 1.770 43.874

Tsavdaridis
69.65 1.527

50.834

Panedpojaman 195.1742 
(+5.2%)

1.5283 
(+5.2%)

0.3055 
(-7.5%) 47.003

Wang 185.5207 1.4527 0.3304 103.1092 
(+48.0%) 1.032 75.255

Grilo - 54.335

Table 7. Results for B3

Method Effective length
[mm]

Relative 
slenderness

[-]

Buckling 
coefficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
134.6477 1.0170 0.5301

N/A 1.919 64.903

Tsavdaridis
50.05 2.039

61.102

Panedpojaman 105.8429 
(-21.4%)

0.7994
(-21.4%)

0.6625
(+25.0%) 76.363

Wang 134.6477 1.0170 0.5301 71.6888 
(+43.2%) 1.423 87.519

Grilo - 65.895
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DISCUSSION

Each of the methods discussed above refers to 
similar observations of the behaviour of the web 
post under load. Both numerical simulations and 

experimental studies confirm the occurrence of 
the S-shaped web-post buckling due to intersect-
ing trajectories of compressive and tensile stress-
es. The goal is to determine the stresses acting on 
the web post and to investigate its stability under 

Table 8. Results for B4

Method Effective length
[mm]

Relative 
slenderness

[-]

Buckling 
coefficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
131.9365 0.8122 0.6545

N/A 1.564 98.359

Tsavdaridis
49.00 1.701

90.439

Panedpojaman 95.0718 
(-27.9%) 0.5852 (-27.9%) 0.7941 

(+21.3%) 109.729

Wang 131.9365 0.8122 0.6545 68.9629 
(+40.7%) 1.208 127.284

Grilo - 84.726

Table 9. Results for B5

Method Effective length
[mm]

Relative 
slenderness

[-]

Buckling 
coefficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
189.1084 0.8121 0.6546

N/A 0.878 175.206

Tsavdaridis
61.00 0.953

161.399

Panedpojaman 154.5321 
(-18.3%)

0.6636 
(-18.3%)

0.7470 
(+14.1%) 184.182

Wang 189.1084 0.8121 0.6546 88.3490 
(+44.8%) 0.658 233.762

Grilo - 145.261

Table 10. Results for B6

Method Effective length
[mm]

Relative 
slenderness

[-]

Buckling 
coefficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
216.7516 0.9308 0.5811

N/A 1.801 75.824

Tsavdaridis
27.50 2.114

64.592

Panedpojaman 128.9911
(-40.5%)

0.5539 
(-40.5%)

0.8124 
(+39.8%) 90.302

Wang 216.7516 0.9308 0.5811 47.2952 
(+72.0%) 1.229 111.087

Grilo - 51.031

Table 11. Results for B7

Method Effective length
[mm]

Relative slen-
derness

[-]

Buckling coef-
ficient χ

[-]

Effective width
[mm]

σ for Vv=1kN
[MPa]

Vv,Rd
[kN]

Lawson
213.3383 0.5826 0.7957

N/A 1.008 185.416

Tsavdaridis
31.50 1.176

159.035

Panedpojaman 137.4491 
(-35.6%)

0.3753
(-35.6%)

0.9103
(+14.4%) 181.939

Wang 213.3383 0.5826 0.7957 47.3110 
(+50.2%) 0.783 238.860

Grilo - 97.557
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buckling load following the analogy to compres-
sion member buckling as per PN-EN 1993-1-1 [7]. 

In the method by Lawson et al. [15, 30], 
which is an update of Ward’s method (SCI P100) 
[29], the compressive stresses acting on the ef-
fective strut are approximated by shear stresses 
caused by the horizontal shear force at mid-depth 
of the web post. In order to be able to compare 
the value of the load capacity calculated from 
this method with other methods, the interdepen-
dence of the horizontal force with the vertical 
shear force was used. The method of Tsavdari-
dis et al. [32, 33] analysed in this article differs 
from the method of Lawson et al. [15, 30] only 
in that, for simplicity, the compressive stresses 
in the effective strut are approximated by the 
vertical shear force in the upper tee, i.e., with 
half of the total vertical shear force acting on the 
effective web width. Thus, the difference in the 
bearing capacity formula is that formula (4) of 
the Lawson method has an additional coefficient 
heff /s. The Lawson resistance is higher when this 
factor is greater than 1 when the horizontal shear 
force is less than the total vertical shear force. 
This is the case when the heff is greater than the 
opening axial spacing s, as in beams B3-B7. In 
beams B1 and B2, Lawson’s resistance is lower 
than that provided by Tsavdaridis. The ratio of 
load capacities obtained from these two methods 
is inversely proportional to the assumed ratio of 
compressive stresses. The difference between 
these methods for the analysed beam geometries 
is from a few to a dozen or so per cent, Table 
12. In general, according to SCI P355 [15], the 

limits of using the Lawson method with assump-
tions for closely spaced openings are as follows: 
0.3d0 ≤ s0 ≤ 0.5d0. This condition is not met for 
beams B6 and B7 because s0 < 0.3d0, i.e., 0.13d0 
and 0.15d0 respectively. 

Panedpojaman et al. [23] adopted the as-
sumptions of Tsavdaridis et al. [32, 33] with  
a modification of the strut length, which for s/
d0<1.5 is always shorter. However, in order to 
obtain the effective length, the k-factor must ad-
ditionally be used, taking into account the effect 
of the size of the area above the openings and the 
variability of stresses around the openings on the 
restraint of the strut. For this reason, the resis-
tance according to Panedpojaman [23] is higher 
than that given by Tsavdaridis, except for the B2 
beam, for which a greater value of the effective 
length was obtained as a result of the modifica-
tion with the k factor. Figure 7 shows that Paned-
pojaman’s load capacity for beams B3 and B4 is 
higher. At the same time, the Lawson, Tsavdaridis 

Fig. 7. Vertical shear force resistance for the discussed methods

Table 12. Comparison of load bearing capacities for 
Lawson and Tsavdaridis methods

Beams 𝛼𝛼𝛼𝛼 =
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠

=
𝜎𝜎𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝜎𝜎𝜎𝜎𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

=
𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇,𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇,𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇,𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
 

B1 0.933306

B2 0.863093

B3 1.062200

B4 1.087576

B5 1.085546

B6 1.173886

B7 1.165880
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and Grilo methods give lower but similar results. 
This is due to a simultaneous drop of d0/H (0.61 
and 0.60, respectively) and d0/d (0.83 and 0.79) 
ratios, indicating a large area above the openings. 
Its beneficial effect is included in the Panedpo-
jaman method via the modification factor k. The 
relative slenderness value varies in proportion 
to the decrease in effective length, Tables 5-11. 
After Panedpojaman’s modification, the effective 
length of the strut decreased compared with the 
Tsavdaridis method by an average of 22.5% for 
beams B3-B5 and 40.5% for beam B6, which re-
sulted in a nearly 40% higher buckling coefficient 
χ for this beam. The higher load capacity from 
Lawson compared with that of Panedpojaman for 
beam B7 beam is not taken into account because, 
as previously stated, beams B6 and B7 did not 
meet the criteria for SCI P355 [15] application. 

The experimental tests of Tsavdaridis and 
D’Mello [32] were limited to short beams (L = 
1.7m) with thin webs, opening diameter d0 = 0.7d, 
and the ratio s/d0 = 1.3. Based on the tests, they 
calibrated the FE model of a single web post. 
Panedpojaman [23] investigated experimentally 
more diverse short and long composite and non-
composite beams, while for numerical simula-
tions he also used a single web post model based 
on the Tsavdaridis and D’Mello model [32]. The 
assumption that the strut’s effective width be = 
s0/2 is considered a conservative approximation 
for low d0/d and s/d0 ratios. Panedpojaman et al. 
[23] admit that their analytical method for thin and 
narrow posts (s/d0 = 1.1) leads to a significant un-
derestimation of the load capacity by 47% on av-
erage, while the methods of Tsavdaridis and Law-
son give even lower results. As the width of the 
web post increases, the actual width of the com-
pression field decreases, and for ratios s/d0 > 1.5 it 
becomes closer to the value s0/2. To ensure safe re-
sults of the analytical methods, Panedpojaman et 
al. [23] and Tsavdaridis and D’Mello [32] adopted  
a constant value of the effective width for all ge-
ometries. In this article, beams B5, B6 and B7 
correspond to the geometry of beams NB5, NB7 
and NB6, respectively,[23], only the value of the 
yield stress fy is different. The analytical results 
in [23] for these beams are 4%, 18%, and 26% 
lower than the numerical model of a single web 
post. Therefore, it can be concluded that for the 
B6 and B7 beams with narrow posts (s/d0 = 1.1), 
the results obtained were conservative.

The load capacity determined by taking into 
account the modified effective width according 

to Wang et al. [34] is much higher than capaci-
tys determined according to other methods. The 
method is an alternative version of Tsavdaridis 
and D’Mello’s method [32], differing only in 
adopting a larger effective width. The empirical 
formulas of Wang et al. [34] are based on nu-
merical simulations based on the Tsavdaridis and 
D’Mello short beam model [32] with the initial 
imperfection of the web increased from tw/200 to 
1mm. The model has four openings on the web, 
and the support posts and the central post are stiff-
ened. During experimental tests of such beams, 
Grilo et al. [35] found it difficult to determine the 
critical load due to the strong influence of the bor-
der effect that occurs for the adopted laboratory 
conditions. There is also the fact that the study of 
Tsavdaridis and D’Mello [32] was quite limited. 
Therefore, the modification based on the width 
measurement of the compressive stress band in 
the web post using such a FEM model is still un-
reliable. However, considering that the method 
of Panedpojaman et al. [23] leads to conservative 
results under certain conditions, the actual load 
capacity results can be limited by the Panedpoja-
man method from below and by the Wang method 
from above, especially for beams B6 and B7, for 
which s/d0 = 1.1.

Grilo et al. [35] developed a different analyti-
cal procedure but based on similar observations. 
They tested short beams with thin webs (5.0 mm 
and 6.0 mm nominal thickness) and noticed the 
influence of the border effect, especially for the 
ratios s/d0 = 1.15 and d0/H = 0.8, for which large 
deformations occurred. Similar geometric rela-
tionships appeared in the B6 and B7 beams tested 
in the current article. Numerical analyses allowed 
Grilo et al. [35] to isolate this effect and devel-
op a new modified FEM model of a single web 
post. They found that the single web post model 
of Panedpojaman [23] and Tsavdaridis [32] used 
unrealistic ideal boundary conditions. For the ge-
ometry of the B1, B2, B3 and B4 beams specified 
in the article by Grilo et al. [35] as beams A2, A3, 
A6 and B6, the analytical results were verified 
with numerical results, assuming the measured 
values of the yield strength according to [35]. It 
was found that the analytical load capacity is ex-
ceptionally close to the numerical results for the 
single web post model - the maximum difference 
on the safe side did not exceed 5%, while the ana-
lytical load capacity was lower by an average of 
14% relative to the experimental tests. From Fig-
ure 7, it follows that the analytical load capacity 
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of the Grilo method is quite similar to the load ca-
pacity obtained by Lawson [15], Tsavdaridis and 
D’Mello [32] and Panedpojaman [23] for beams 
with thin webs and wider posts - B1, B2, B3 and 
B4. The method gives lower results for beams 
with thicker and narrower webs - beams B5, B6 
and B7. The most significant deviation occurred 
for the B7 beam with a narrow post (s/d0 = 1.15) 
and the web much thicker than in the other beams 
(tw = 13.5 mm). The lower value of the bearing 
capacity compared to other methods may be relat-
ed to the separation of the influence of the border 
effect for this type of web geometry. 

SUMMARY AND CONCLUSIONS

This study discusses the behaviour of cellu-
lar beams under load and names typical modes of 
failure. Two forms of capacity loss were distin-
guished in detail, i.e., web-post buckling (WPB) 
and Vierendeel’s mechanism (VM) in the case 
of beams secured against lateral torsional buck-
ling. Analytical models for calculating the buck-
ling resistance of the web post for beams with 
closely spaced circular openings in the web were 
presented. Care was taken to ensure that the no-
menclature of different algorithms was consistent 
(according to EN 1993-1-1 [7]) and expressed the 
resistance to vertical shear force. Then, the load 
capacity calculated according to each analytical 
method was compared for seven beam geometries 
for which WPB failure mode was demonstrated 
in experimental and numerical analyses in the 
scientific literature [23, 35]. The study aimed to 
investigate the interrelationships between these 
methods and discuss the discrepancies between 
the obtained results. 

Each algorithm was implemented in MS Ex-
cel, and the results were tabulated in Tables 5-11 
and plotted in Figure 7. The differences between 
the methods are significant, as demonstrated in 
this study, especially for beams with narrow posts. 

The discrepancies result from a relatively 
small number of experimental studies focused on 
capturing the WPB phenomenon and the interac-
tion between WPB and VM. Moreover, the tests 
are usually limited to less geometrically differen-
tiated short-span beams in which shear can cause 
a border effect. For this reason, the numerical 
models of different authors vary on some issues, 
especially when it comes to the single web post 
model. Such models are used by Tsavdaridis and 

D’Mello [32], Panedpojaman et al.[23] and Grilo 
et al. [35]. While the first two [32, 23] are simi-
lar, the model [35] adopts much less optimistic 
boundary conditions.

Wang et al. [34] used the numerical model of 
the short beam of Tsavdaridis and D’Mello [32] 
with slight modifications, on the basis of which 
they measured the width of the compressive stress 
band in the web post. The increased effective 
width leads to a much higher load capacity than in 
the other methods. However, for narrow posts (s/
d0 = 1.1), the Lawson, Tsavdaridis and Panedpoja-
man methods are considered conservative even by 
the authors themselves. The different method by 
Grilo et al. [35] is quite convergent with the other 
methods for wider web posts but for thicker and 
narrow posts, it provides much lower results, Fig-
ure 7. This may be due to border effect elimination 
and adoption of more conservative boundary con-
ditions in the numerical model. However, Grilo’s 
analytical procedure shows very good agreement 
with his numerical model. It is thus necessary to 
verify the assumptions of the numerical models 
used by the authors mentioned above. 

Further testing of widely varying beams is 
therefore needed to eliminate the error in the 
methods for extreme relationships between s/
d0, d0/H, d0/d and d0/tw ratios. A detailed study of 
FEM models is needed in order to establish ap-
propriate boundary conditions and analysis pa-
rameters for a single web post model. Finally, it 
is necessary to verify the correctness and identify 
inconsistencies in the numerical models used to 
calibrate analytical methods [32, 23, 35, 34] to as-
sess the individual methods unequivocally. This 
paper attempts to demonstrate the points of issue 
in different computational methods. The discus-
sion enabled outlining directions for further work 
aiming at verification of assumptions of numeri-
cal models and establishment of reliable guide-
lines for designers. Determining accurate design 
procedure will contribute to the optimal design 
of openwork structures while maintaining an ad-
equate level of safety.
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